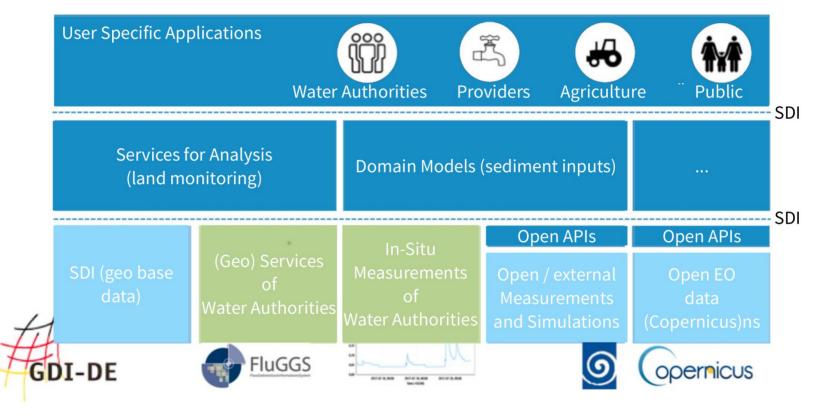

Automated Creation of Earth Observation Products for Water Resource

Matthes Rieke

CC BY 4.0

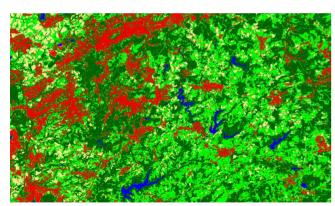


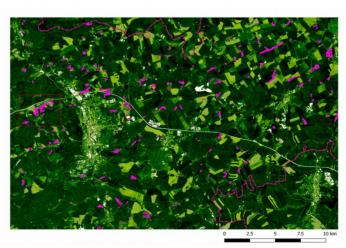
MOTIVATION

CONCEPTUAL OVERVIEW

PROJECT OVERVIEW

- Wupper region in North-Rhine Westfalia, Germany
- Wupperverband is the responsible water authority
 - Operation of river dams, clarification plants
 - Water network monitoring (gauges, temperature, precipitation)





PRODUCTS FROM EARTH OBSERVATION

- Overall goal: Increasing the efficiency of environmental monitoring by combining various geo- and sensor data and model components for
 - Structure of a dynamic land register (vitality of the vegetation, actual crop rotations, types of sealing and use etc.)
 - Optimized modeling of inputs in rivers and reservoirs
 - Quantification and localization of sediment and pollutant inputs

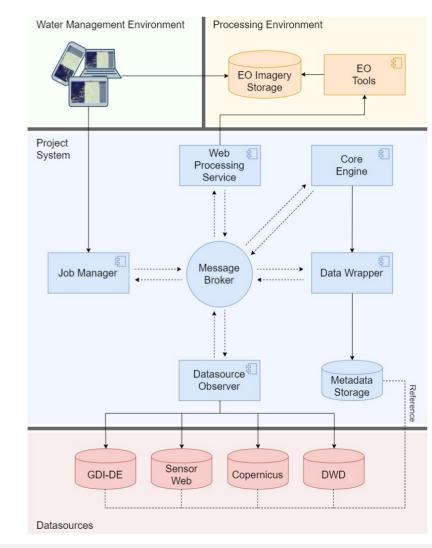
Detailed land use classification

Intra-annual monitoring of agriculture

Change of water-land borders

PRODUCTS FROM EARTH OBSERVATION

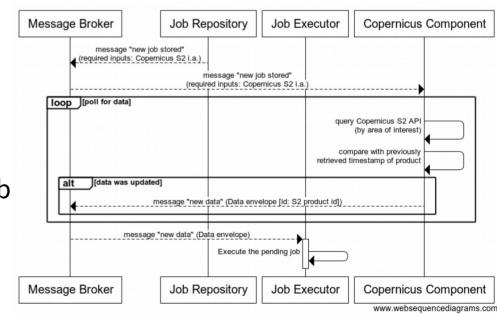
Group	Product
Land use classification	- Differentiation of sealed and unsealed surfaces
	- Detailed classification of land use
	- Intra-annual change analysis of land cover / use
Monitoring of vegetation	- Determination of the vegetation density
	- Intra-annual monitoring of grassland and field grasslands
	- Determination of forest damage / vitality caused by pests
	- Analysis of vitality changes of woodlots
Water vegetation monitoring	- Detection of Macrophyte Hotspots (in shallow waters)
	- Identification of vegetation structures in rivers
Water network monitoring	- Observing the change of water-land borders
	- Monitoring the water level of reservoirs
Damage monitoring	- Determination of forest damage (wind break, snow break) after storms


DESIGN APPROACH

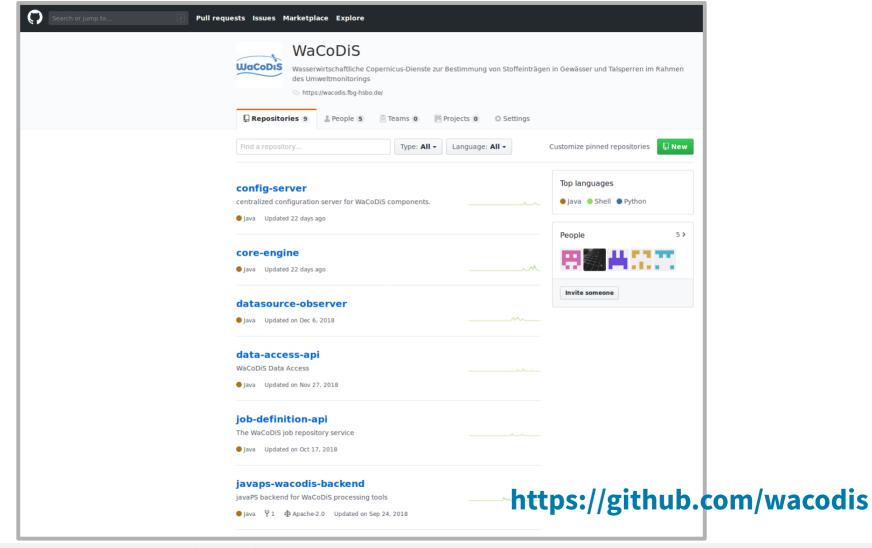
- **Problem:** EO data to be used for processing must fulfill certain requirements
 - Minimal cloud coverage
 - High percentage of spatial overlap
 - Available as "time series" (e.g for training or intra-annual monitoring)
- Approach: Offering EO products "on availability"
 - Integration of models for sediment and pollutant inputs into river systems and dams
 - Information processing as soon as required data becomes available
 - → event-driven processing of **EO data, in-situ measurements** etc.
 - Re-use of existing EO processing tools
 - Remote use of proprietary services
 - Deployment in "Copernicus Cloud Environments" (e.g. DIAS platforms, national infrastructures such as CODE-DE)

SYSTEM ARCHITECTURE

- Publish/Subscribe architecture
 - Start a process when new data is available
- Dedicated components observe the data centres
 - Sensor Web, Copernicus Open Access Hub, DWD
- Two-layered approach
 - Integrate legacy EO tools via WPS
 - Use state of the art processing
 - based on Spark, Geotrellis
 - Assess Machine Learning algorithms
 - for specific tasks (e.g. land classification)


APPROACHING INTEROPERABILITY

- OGC Web Processing Service 2.0
 - Standardized interface for synchronous and asynchronous processing jobs
 - Allows the definition of **inputs** and **outputs**, and processing **parameters** (e.g. output resolution)
- WPS is used for
 - Wrapping of already existing EO processing tools
 - Execution environment for newly developed tools
- Standardized interface allows the lightweight introduction of additional tools → flexible and extensible architecture with broad processing capabilities



EVENT-DRIVEN WORKFLOWS

- The system is designed to **observe data centres** (Sentinel Hub, Sensor Web of Wupperverband, ...)
 - Configurable observation cycles (e.g. every hour)
- Data of interest is identified
 - Metadata (by a specific domain data model) is published on the internal Message Broker
 - Interested components (e.g. the Job Execution) catch up
 - Achieves automatic execution

OUTLOOK

- Implementation of first prototype planned for mid 2019
 - Components ready (as seen in the architecture overview)
 - Integration of one EO tool (for intra-annual land use classification)
- Feedback round with special departments of Wupperverband
- Product storage
 - As-is storage (e.g. GeoTIFFs) vs. Raster-optimized services (e.g. WCS)
- Development of a system dashboard
 - When did an EO tool execute? Where was the product stored?
 - Management of Jobs
- Investigation on the deployment options
 - DIAS (e.g. Mundi Web Services, Sobloo, WEkEO, ...)
 - CODE-DE
 - Distributed components (e.g. WPS and tools running remotely)

Thanks for your attention! m.rieke@52north.org

Matthes Rieke

This project received funding from:

Deadline extended!

Geospatial Sensing – from sensing to understanding our world

Submission Deadline: April 28th

https://52north.org/conference